Metamath Proof Explorer


Theorem difprsn1

Description: Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017)

Ref Expression
Assertion difprsn1 ABABA=B

Proof

Step Hyp Ref Expression
1 necom BAAB
2 df-pr AB=AB
3 2 equncomi AB=BA
4 3 difeq1i ABA=BAA
5 difun2 BAA=BA
6 4 5 eqtri ABA=BA
7 disjsn2 BABA=
8 disj3 BA=B=BA
9 7 8 sylib BAB=BA
10 6 9 eqtr4id BAABA=B
11 1 10 sylbir ABABA=B