Metamath Proof Explorer


Theorem difsnb

Description: ( B \ { A } ) equals B if and only if A is not a member of B . Generalization of difsn . (Contributed by David Moews, 1-May-2017)

Ref Expression
Assertion difsnb ¬ABBA=B

Proof

Step Hyp Ref Expression
1 difsn ¬ABBA=B
2 neldifsnd AB¬ABA
3 nelne1 AB¬ABABBA
4 2 3 mpdan ABBBA
5 4 necomd ABBAB
6 5 necon2bi BA=B¬AB
7 1 6 impbii ¬ABBA=B