Description: ( B \ { A } ) is a proper subclass of B if and only if A is a member of B . (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | difsnpss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb | |
|
2 | difss | |
|
3 | 2 | biantrur | |
4 | difsnb | |
|
5 | 4 | necon3bbii | |
6 | df-pss | |
|
7 | 3 5 6 | 3bitr4i | |
8 | 1 7 | bitri | |