Description: ( B \ { A } ) equals B if and only if A is not a member of B . Generalization of difsn . (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | difsnb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difsn | |
|
2 | neldifsnd | |
|
3 | nelne1 | |
|
4 | 2 3 | mpdan | |
5 | 4 | necomd | |
6 | 5 | necon2bi | |
7 | 1 6 | impbii | |