Metamath Proof Explorer


Theorem disjALTV0

Description: The null class is disjoint. (Contributed by Peter Mazsa, 27-Sep-2021)

Ref Expression
Assertion disjALTV0 Disj

Proof

Step Hyp Ref Expression
1 br0 ¬ u x
2 1 nex ¬ u u x
3 nexmo ¬ u u x * u u x
4 2 3 ax-mp * u u x
5 4 ax-gen x * u u x
6 rel0 Rel
7 dfdisjALTV4 Disj x * u u x Rel
8 5 6 7 mpbir2an Disj