Metamath Proof Explorer


Theorem disjeq1

Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion disjeq1 A=BDisjxACDisjxBC

Proof

Step Hyp Ref Expression
1 eqimss2 A=BBA
2 disjss1 BADisjxACDisjxBC
3 1 2 syl A=BDisjxACDisjxBC
4 eqimss A=BAB
5 disjss1 ABDisjxBCDisjxAC
6 4 5 syl A=BDisjxBCDisjxAC
7 3 6 impbid A=BDisjxACDisjxBC