Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Disjointness
disjeq1
Next ⟩
disjeq1d
Metamath Proof Explorer
Ascii
Unicode
Theorem
disjeq1
Description:
Equality theorem for disjoint collection.
(Contributed by
Mario Carneiro
, 14-Nov-2016)
Ref
Expression
Assertion
disjeq1
⊢
A
=
B
→
Disj
x
∈
A
C
↔
Disj
x
∈
B
C
Proof
Step
Hyp
Ref
Expression
1
eqimss2
⊢
A
=
B
→
B
⊆
A
2
disjss1
⊢
B
⊆
A
→
Disj
x
∈
A
C
→
Disj
x
∈
B
C
3
1
2
syl
⊢
A
=
B
→
Disj
x
∈
A
C
→
Disj
x
∈
B
C
4
eqimss
⊢
A
=
B
→
A
⊆
B
5
disjss1
⊢
A
⊆
B
→
Disj
x
∈
B
C
→
Disj
x
∈
A
C
6
4
5
syl
⊢
A
=
B
→
Disj
x
∈
B
C
→
Disj
x
∈
A
C
7
3
6
impbid
⊢
A
=
B
→
Disj
x
∈
A
C
↔
Disj
x
∈
B
C