Metamath Proof Explorer


Theorem disjrnmpt

Description: Rewriting a disjoint collection using the range of a mapping. (Contributed by Thierry Arnoux, 27-May-2020)

Ref Expression
Assertion disjrnmpt DisjxABDisjyranxABy

Proof

Step Hyp Ref Expression
1 disjabrex DisjxABDisjyz|xAz=By
2 eqid xAB=xAB
3 2 rnmpt ranxAB=z|xAz=B
4 disjeq1 ranxAB=z|xAz=BDisjyranxAByDisjyz|xAz=By
5 3 4 ax-mp DisjyranxAByDisjyz|xAz=By
6 1 5 sylibr DisjxABDisjyranxABy