| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfdisj1 |
|
| 2 |
|
nfcv |
|
| 3 |
|
nfv |
|
| 4 |
|
nfcsb1v |
|
| 5 |
4
|
nfcri |
|
| 6 |
3 5
|
nfan |
|
| 7 |
6
|
nfab |
|
| 8 |
7
|
nfuni |
|
| 9 |
8
|
nfcsb1 |
|
| 10 |
9
|
nfeq1 |
|
| 11 |
2 10
|
nfralw |
|
| 12 |
|
eqeq2 |
|
| 13 |
12
|
raleqbi1dv |
|
| 14 |
|
vex |
|
| 15 |
14
|
a1i |
|
| 16 |
|
simplll |
|
| 17 |
|
simpllr |
|
| 18 |
|
simprl |
|
| 19 |
|
simplr |
|
| 20 |
|
simprr |
|
| 21 |
|
csbeq1a |
|
| 22 |
4 21
|
disjif |
|
| 23 |
16 17 18 19 20 22
|
syl122anc |
|
| 24 |
|
simpr |
|
| 25 |
|
simpllr |
|
| 26 |
24 25
|
eqeltrrd |
|
| 27 |
|
simplr |
|
| 28 |
21
|
eleq2d |
|
| 29 |
24 28
|
syl |
|
| 30 |
27 29
|
mpbid |
|
| 31 |
26 30
|
jca |
|
| 32 |
23 31
|
impbida |
|
| 33 |
|
equcom |
|
| 34 |
32 33
|
bitrdi |
|
| 35 |
34
|
abbidv |
|
| 36 |
|
df-sn |
|
| 37 |
35 36
|
eqtr4di |
|
| 38 |
37
|
unieqd |
|
| 39 |
|
unisnv |
|
| 40 |
38 39
|
eqtrdi |
|
| 41 |
|
csbeq1 |
|
| 42 |
|
csbid |
|
| 43 |
41 42
|
eqtrdi |
|
| 44 |
40 43
|
syl |
|
| 45 |
44
|
ralrimiva |
|
| 46 |
1 11 13 15 45
|
elabreximd |
|
| 47 |
46
|
ralrimiva |
|
| 48 |
|
invdisj |
|
| 49 |
47 48
|
syl |
|