Metamath Proof Explorer


Theorem disjif

Description: Property of a disjoint collection: if B ( x ) and B ( Y ) = D have a common element Z , then x = Y . (Contributed by Thierry Arnoux, 30-Dec-2016)

Ref Expression
Hypotheses disjif.1 _xC
disjif.2 x=YB=C
Assertion disjif DisjxABxAYAZBZCx=Y

Proof

Step Hyp Ref Expression
1 disjif.1 _xC
2 disjif.2 x=YB=C
3 inelcm ZBZCBC
4 1 2 disji2f DisjxABxAYAxYBC=
5 4 3expia DisjxABxAYAxYBC=
6 5 necon1d DisjxABxAYABCx=Y
7 6 3impia DisjxABxAYABCx=Y
8 3 7 syl3an3 DisjxABxAYAZBZCx=Y