Metamath Proof Explorer


Theorem disjorf

Description: Two ways to say that a collection B ( i ) for i e. A is disjoint. (Contributed by Thierry Arnoux, 8-Mar-2017)

Ref Expression
Hypotheses disjorf.1 _iA
disjorf.2 _jA
disjorf.3 i=jB=C
Assertion disjorf DisjiABiAjAi=jBC=

Proof

Step Hyp Ref Expression
1 disjorf.1 _iA
2 disjorf.2 _jA
3 disjorf.3 i=jB=C
4 df-disj DisjiABx*iAxB
5 ralcom4 iAxjAxBxCi=jxiAjAxBxCi=j
6 orcom i=jBC=BC=i=j
7 df-or BC=i=j¬BC=i=j
8 neq0 ¬BC=xxBC
9 elin xBCxBxC
10 9 exbii xxBCxxBxC
11 8 10 bitri ¬BC=xxBxC
12 11 imbi1i ¬BC=i=jxxBxCi=j
13 19.23v xxBxCi=jxxBxCi=j
14 12 13 bitr4i ¬BC=i=jxxBxCi=j
15 6 7 14 3bitri i=jBC=xxBxCi=j
16 15 ralbii jAi=jBC=jAxxBxCi=j
17 ralcom4 jAxxBxCi=jxjAxBxCi=j
18 16 17 bitri jAi=jBC=xjAxBxCi=j
19 18 ralbii iAjAi=jBC=iAxjAxBxCi=j
20 nfv ixC
21 3 eleq2d i=jxBxC
22 1 2 20 21 rmo4f *iAxBiAjAxBxCi=j
23 22 albii x*iAxBxiAjAxBxCi=j
24 5 19 23 3bitr4i iAjAi=jBC=x*iAxB
25 4 24 bitr4i DisjiABiAjAi=jBC=