Description: Two ways to say that a collection B ( i ) for i e. A is disjoint. (Contributed by Thierry Arnoux, 8-Mar-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | disjorf.1 | |
|
disjorf.2 | |
||
disjorf.3 | |
||
Assertion | disjorf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjorf.1 | |
|
2 | disjorf.2 | |
|
3 | disjorf.3 | |
|
4 | df-disj | |
|
5 | ralcom4 | |
|
6 | orcom | |
|
7 | df-or | |
|
8 | neq0 | |
|
9 | elin | |
|
10 | 9 | exbii | |
11 | 8 10 | bitri | |
12 | 11 | imbi1i | |
13 | 19.23v | |
|
14 | 12 13 | bitr4i | |
15 | 6 7 14 | 3bitri | |
16 | 15 | ralbii | |
17 | ralcom4 | |
|
18 | 16 17 | bitri | |
19 | 18 | ralbii | |
20 | nfv | |
|
21 | 3 | eleq2d | |
22 | 1 2 20 21 | rmo4f | |
23 | 22 | albii | |
24 | 5 19 23 | 3bitr4i | |
25 | 4 24 | bitr4i | |