Metamath Proof Explorer


Theorem disjorsf

Description: Two ways to say that a collection B ( i ) for i e. A is disjoint. (Contributed by Thierry Arnoux, 8-Mar-2017)

Ref Expression
Hypothesis disjorsf.1 _xA
Assertion disjorsf DisjxABiAjAi=ji/xBj/xB=

Proof

Step Hyp Ref Expression
1 disjorsf.1 _xA
2 nfcv _iB
3 nfcsb1v _xi/xB
4 csbeq1a x=iB=i/xB
5 1 2 3 4 cbvdisjf DisjxABDisjiAi/xB
6 csbeq1 i=ji/xB=j/xB
7 6 disjor DisjiAi/xBiAjAi=ji/xBj/xB=
8 5 7 bitri DisjxABiAjAi=ji/xBj/xB=