Metamath Proof Explorer


Theorem rmo4f

Description: Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006) (Revised by Thierry Arnoux, 11-Oct-2016) (Revised by Thierry Arnoux, 8-Mar-2017) (Revised by Thierry Arnoux, 8-Oct-2017)

Ref Expression
Hypotheses rmo4f.1 _xA
rmo4f.2 _yA
rmo4f.3 xψ
rmo4f.4 x=yφψ
Assertion rmo4f *xAφxAyAφψx=y

Proof

Step Hyp Ref Expression
1 rmo4f.1 _xA
2 rmo4f.2 _yA
3 rmo4f.3 xψ
4 rmo4f.4 x=yφψ
5 nfv yφ
6 1 2 5 rmo3f *xAφxAyAφyxφx=y
7 3 4 sbiev yxφψ
8 7 anbi2i φyxφφψ
9 8 imbi1i φyxφx=yφψx=y
10 9 2ralbii xAyAφyxφx=yxAyAφψx=y
11 6 10 bitri *xAφxAyAφψx=y