| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjabrexf.1 |
|
| 2 |
|
nfdisj1 |
|
| 3 |
|
nfcv |
|
| 4 |
1
|
nfcri |
|
| 5 |
|
nfcsb1v |
|
| 6 |
5
|
nfcri |
|
| 7 |
4 6
|
nfan |
|
| 8 |
7
|
nfab |
|
| 9 |
8
|
nfuni |
|
| 10 |
9
|
nfcsb1 |
|
| 11 |
10
|
nfeq1 |
|
| 12 |
3 11
|
nfralw |
|
| 13 |
|
eqeq2 |
|
| 14 |
13
|
raleqbi1dv |
|
| 15 |
|
vex |
|
| 16 |
15
|
a1i |
|
| 17 |
|
simplll |
|
| 18 |
|
simpllr |
|
| 19 |
|
simprl |
|
| 20 |
|
simplr |
|
| 21 |
|
simprr |
|
| 22 |
|
csbeq1a |
|
| 23 |
1 5 22
|
disjif2 |
|
| 24 |
17 18 19 20 21 23
|
syl122anc |
|
| 25 |
|
simpr |
|
| 26 |
|
simpllr |
|
| 27 |
25 26
|
eqeltrrd |
|
| 28 |
|
simplr |
|
| 29 |
22
|
eleq2d |
|
| 30 |
25 29
|
syl |
|
| 31 |
28 30
|
mpbid |
|
| 32 |
27 31
|
jca |
|
| 33 |
24 32
|
impbida |
|
| 34 |
|
equcom |
|
| 35 |
33 34
|
bitrdi |
|
| 36 |
35
|
abbidv |
|
| 37 |
|
df-sn |
|
| 38 |
36 37
|
eqtr4di |
|
| 39 |
38
|
unieqd |
|
| 40 |
|
unisnv |
|
| 41 |
39 40
|
eqtrdi |
|
| 42 |
|
csbeq1 |
|
| 43 |
|
csbid |
|
| 44 |
42 43
|
eqtrdi |
|
| 45 |
41 44
|
syl |
|
| 46 |
45
|
ralrimiva |
|
| 47 |
2 12 14 16 46
|
elabreximd |
|
| 48 |
47
|
ralrimiva |
|
| 49 |
|
invdisj |
|
| 50 |
48 49
|
syl |
|