Metamath Proof Explorer


Theorem disjpreima

Description: A preimage of a disjoint set is disjoint. (Contributed by Thierry Arnoux, 7-Feb-2017)

Ref Expression
Assertion disjpreima FunFDisjxABDisjxAF-1B

Proof

Step Hyp Ref Expression
1 inpreima FunFF-1y/xBz/xB=F-1y/xBF-1z/xB
2 imaeq2 y/xBz/xB=F-1y/xBz/xB=F-1
3 ima0 F-1=
4 2 3 eqtrdi y/xBz/xB=F-1y/xBz/xB=
5 1 4 sylan9req FunFy/xBz/xB=F-1y/xBF-1z/xB=
6 5 ex FunFy/xBz/xB=F-1y/xBF-1z/xB=
7 csbima12 y/xF-1B=y/xF-1y/xB
8 csbconstg yVy/xF-1=F-1
9 8 elv y/xF-1=F-1
10 9 imaeq1i y/xF-1y/xB=F-1y/xB
11 7 10 eqtri y/xF-1B=F-1y/xB
12 csbima12 z/xF-1B=z/xF-1z/xB
13 csbconstg zVz/xF-1=F-1
14 13 elv z/xF-1=F-1
15 14 imaeq1i z/xF-1z/xB=F-1z/xB
16 12 15 eqtri z/xF-1B=F-1z/xB
17 11 16 ineq12i y/xF-1Bz/xF-1B=F-1y/xBF-1z/xB
18 17 eqeq1i y/xF-1Bz/xF-1B=F-1y/xBF-1z/xB=
19 6 18 syl6ibr FunFy/xBz/xB=y/xF-1Bz/xF-1B=
20 19 orim2d FunFy=zy/xBz/xB=y=zy/xF-1Bz/xF-1B=
21 20 ralimdv FunFzAy=zy/xBz/xB=zAy=zy/xF-1Bz/xF-1B=
22 21 ralimdv FunFyAzAy=zy/xBz/xB=yAzAy=zy/xF-1Bz/xF-1B=
23 disjors DisjxAByAzAy=zy/xBz/xB=
24 disjors DisjxAF-1ByAzAy=zy/xF-1Bz/xF-1B=
25 22 23 24 3imtr4g FunFDisjxABDisjxAF-1B
26 25 imp FunFDisjxABDisjxAF-1B