Description: A preimage of a disjoint set is disjoint. (Contributed by Thierry Arnoux, 7-Feb-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | disjpreima | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inpreima | |
|
2 | imaeq2 | |
|
3 | ima0 | |
|
4 | 2 3 | eqtrdi | |
5 | 1 4 | sylan9req | |
6 | 5 | ex | |
7 | csbima12 | |
|
8 | csbconstg | |
|
9 | 8 | elv | |
10 | 9 | imaeq1i | |
11 | 7 10 | eqtri | |
12 | csbima12 | |
|
13 | csbconstg | |
|
14 | 13 | elv | |
15 | 14 | imaeq1i | |
16 | 12 15 | eqtri | |
17 | 11 16 | ineq12i | |
18 | 17 | eqeq1i | |
19 | 6 18 | syl6ibr | |
20 | 19 | orim2d | |
21 | 20 | ralimdv | |
22 | 21 | ralimdv | |
23 | disjors | |
|
24 | disjors | |
|
25 | 22 23 24 | 3imtr4g | |
26 | 25 | imp | |