Metamath Proof Explorer


Theorem disjpreima

Description: A preimage of a disjoint set is disjoint. (Contributed by Thierry Arnoux, 7-Feb-2017)

Ref Expression
Assertion disjpreima ( ( Fun 𝐹Disj 𝑥𝐴 𝐵 ) → Disj 𝑥𝐴 ( 𝐹𝐵 ) )

Proof

Step Hyp Ref Expression
1 inpreima ( Fun 𝐹 → ( 𝐹 “ ( 𝑦 / 𝑥 𝐵 𝑧 / 𝑥 𝐵 ) ) = ( ( 𝐹 𝑦 / 𝑥 𝐵 ) ∩ ( 𝐹 𝑧 / 𝑥 𝐵 ) ) )
2 imaeq2 ( ( 𝑦 / 𝑥 𝐵 𝑧 / 𝑥 𝐵 ) = ∅ → ( 𝐹 “ ( 𝑦 / 𝑥 𝐵 𝑧 / 𝑥 𝐵 ) ) = ( 𝐹 “ ∅ ) )
3 ima0 ( 𝐹 “ ∅ ) = ∅
4 2 3 eqtrdi ( ( 𝑦 / 𝑥 𝐵 𝑧 / 𝑥 𝐵 ) = ∅ → ( 𝐹 “ ( 𝑦 / 𝑥 𝐵 𝑧 / 𝑥 𝐵 ) ) = ∅ )
5 1 4 sylan9req ( ( Fun 𝐹 ∧ ( 𝑦 / 𝑥 𝐵 𝑧 / 𝑥 𝐵 ) = ∅ ) → ( ( 𝐹 𝑦 / 𝑥 𝐵 ) ∩ ( 𝐹 𝑧 / 𝑥 𝐵 ) ) = ∅ )
6 5 ex ( Fun 𝐹 → ( ( 𝑦 / 𝑥 𝐵 𝑧 / 𝑥 𝐵 ) = ∅ → ( ( 𝐹 𝑦 / 𝑥 𝐵 ) ∩ ( 𝐹 𝑧 / 𝑥 𝐵 ) ) = ∅ ) )
7 csbima12 𝑦 / 𝑥 ( 𝐹𝐵 ) = ( 𝑦 / 𝑥 𝐹 𝑦 / 𝑥 𝐵 )
8 csbconstg ( 𝑦 ∈ V → 𝑦 / 𝑥 𝐹 = 𝐹 )
9 8 elv 𝑦 / 𝑥 𝐹 = 𝐹
10 9 imaeq1i ( 𝑦 / 𝑥 𝐹 𝑦 / 𝑥 𝐵 ) = ( 𝐹 𝑦 / 𝑥 𝐵 )
11 7 10 eqtri 𝑦 / 𝑥 ( 𝐹𝐵 ) = ( 𝐹 𝑦 / 𝑥 𝐵 )
12 csbima12 𝑧 / 𝑥 ( 𝐹𝐵 ) = ( 𝑧 / 𝑥 𝐹 𝑧 / 𝑥 𝐵 )
13 csbconstg ( 𝑧 ∈ V → 𝑧 / 𝑥 𝐹 = 𝐹 )
14 13 elv 𝑧 / 𝑥 𝐹 = 𝐹
15 14 imaeq1i ( 𝑧 / 𝑥 𝐹 𝑧 / 𝑥 𝐵 ) = ( 𝐹 𝑧 / 𝑥 𝐵 )
16 12 15 eqtri 𝑧 / 𝑥 ( 𝐹𝐵 ) = ( 𝐹 𝑧 / 𝑥 𝐵 )
17 11 16 ineq12i ( 𝑦 / 𝑥 ( 𝐹𝐵 ) ∩ 𝑧 / 𝑥 ( 𝐹𝐵 ) ) = ( ( 𝐹 𝑦 / 𝑥 𝐵 ) ∩ ( 𝐹 𝑧 / 𝑥 𝐵 ) )
18 17 eqeq1i ( ( 𝑦 / 𝑥 ( 𝐹𝐵 ) ∩ 𝑧 / 𝑥 ( 𝐹𝐵 ) ) = ∅ ↔ ( ( 𝐹 𝑦 / 𝑥 𝐵 ) ∩ ( 𝐹 𝑧 / 𝑥 𝐵 ) ) = ∅ )
19 6 18 syl6ibr ( Fun 𝐹 → ( ( 𝑦 / 𝑥 𝐵 𝑧 / 𝑥 𝐵 ) = ∅ → ( 𝑦 / 𝑥 ( 𝐹𝐵 ) ∩ 𝑧 / 𝑥 ( 𝐹𝐵 ) ) = ∅ ) )
20 19 orim2d ( Fun 𝐹 → ( ( 𝑦 = 𝑧 ∨ ( 𝑦 / 𝑥 𝐵 𝑧 / 𝑥 𝐵 ) = ∅ ) → ( 𝑦 = 𝑧 ∨ ( 𝑦 / 𝑥 ( 𝐹𝐵 ) ∩ 𝑧 / 𝑥 ( 𝐹𝐵 ) ) = ∅ ) ) )
21 20 ralimdv ( Fun 𝐹 → ( ∀ 𝑧𝐴 ( 𝑦 = 𝑧 ∨ ( 𝑦 / 𝑥 𝐵 𝑧 / 𝑥 𝐵 ) = ∅ ) → ∀ 𝑧𝐴 ( 𝑦 = 𝑧 ∨ ( 𝑦 / 𝑥 ( 𝐹𝐵 ) ∩ 𝑧 / 𝑥 ( 𝐹𝐵 ) ) = ∅ ) ) )
22 21 ralimdv ( Fun 𝐹 → ( ∀ 𝑦𝐴𝑧𝐴 ( 𝑦 = 𝑧 ∨ ( 𝑦 / 𝑥 𝐵 𝑧 / 𝑥 𝐵 ) = ∅ ) → ∀ 𝑦𝐴𝑧𝐴 ( 𝑦 = 𝑧 ∨ ( 𝑦 / 𝑥 ( 𝐹𝐵 ) ∩ 𝑧 / 𝑥 ( 𝐹𝐵 ) ) = ∅ ) ) )
23 disjors ( Disj 𝑥𝐴 𝐵 ↔ ∀ 𝑦𝐴𝑧𝐴 ( 𝑦 = 𝑧 ∨ ( 𝑦 / 𝑥 𝐵 𝑧 / 𝑥 𝐵 ) = ∅ ) )
24 disjors ( Disj 𝑥𝐴 ( 𝐹𝐵 ) ↔ ∀ 𝑦𝐴𝑧𝐴 ( 𝑦 = 𝑧 ∨ ( 𝑦 / 𝑥 ( 𝐹𝐵 ) ∩ 𝑧 / 𝑥 ( 𝐹𝐵 ) ) = ∅ ) )
25 22 23 24 3imtr4g ( Fun 𝐹 → ( Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 ( 𝐹𝐵 ) ) )
26 25 imp ( ( Fun 𝐹Disj 𝑥𝐴 𝐵 ) → Disj 𝑥𝐴 ( 𝐹𝐵 ) )