| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inpreima |
|- ( Fun F -> ( `' F " ( [_ y / x ]_ B i^i [_ z / x ]_ B ) ) = ( ( `' F " [_ y / x ]_ B ) i^i ( `' F " [_ z / x ]_ B ) ) ) |
| 2 |
|
imaeq2 |
|- ( ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) -> ( `' F " ( [_ y / x ]_ B i^i [_ z / x ]_ B ) ) = ( `' F " (/) ) ) |
| 3 |
|
ima0 |
|- ( `' F " (/) ) = (/) |
| 4 |
2 3
|
eqtrdi |
|- ( ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) -> ( `' F " ( [_ y / x ]_ B i^i [_ z / x ]_ B ) ) = (/) ) |
| 5 |
1 4
|
sylan9req |
|- ( ( Fun F /\ ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) ) -> ( ( `' F " [_ y / x ]_ B ) i^i ( `' F " [_ z / x ]_ B ) ) = (/) ) |
| 6 |
5
|
ex |
|- ( Fun F -> ( ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) -> ( ( `' F " [_ y / x ]_ B ) i^i ( `' F " [_ z / x ]_ B ) ) = (/) ) ) |
| 7 |
|
csbima12 |
|- [_ y / x ]_ ( `' F " B ) = ( [_ y / x ]_ `' F " [_ y / x ]_ B ) |
| 8 |
|
csbconstg |
|- ( y e. _V -> [_ y / x ]_ `' F = `' F ) |
| 9 |
8
|
elv |
|- [_ y / x ]_ `' F = `' F |
| 10 |
9
|
imaeq1i |
|- ( [_ y / x ]_ `' F " [_ y / x ]_ B ) = ( `' F " [_ y / x ]_ B ) |
| 11 |
7 10
|
eqtri |
|- [_ y / x ]_ ( `' F " B ) = ( `' F " [_ y / x ]_ B ) |
| 12 |
|
csbima12 |
|- [_ z / x ]_ ( `' F " B ) = ( [_ z / x ]_ `' F " [_ z / x ]_ B ) |
| 13 |
|
csbconstg |
|- ( z e. _V -> [_ z / x ]_ `' F = `' F ) |
| 14 |
13
|
elv |
|- [_ z / x ]_ `' F = `' F |
| 15 |
14
|
imaeq1i |
|- ( [_ z / x ]_ `' F " [_ z / x ]_ B ) = ( `' F " [_ z / x ]_ B ) |
| 16 |
12 15
|
eqtri |
|- [_ z / x ]_ ( `' F " B ) = ( `' F " [_ z / x ]_ B ) |
| 17 |
11 16
|
ineq12i |
|- ( [_ y / x ]_ ( `' F " B ) i^i [_ z / x ]_ ( `' F " B ) ) = ( ( `' F " [_ y / x ]_ B ) i^i ( `' F " [_ z / x ]_ B ) ) |
| 18 |
17
|
eqeq1i |
|- ( ( [_ y / x ]_ ( `' F " B ) i^i [_ z / x ]_ ( `' F " B ) ) = (/) <-> ( ( `' F " [_ y / x ]_ B ) i^i ( `' F " [_ z / x ]_ B ) ) = (/) ) |
| 19 |
6 18
|
imbitrrdi |
|- ( Fun F -> ( ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) -> ( [_ y / x ]_ ( `' F " B ) i^i [_ z / x ]_ ( `' F " B ) ) = (/) ) ) |
| 20 |
19
|
orim2d |
|- ( Fun F -> ( ( y = z \/ ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) ) -> ( y = z \/ ( [_ y / x ]_ ( `' F " B ) i^i [_ z / x ]_ ( `' F " B ) ) = (/) ) ) ) |
| 21 |
20
|
ralimdv |
|- ( Fun F -> ( A. z e. A ( y = z \/ ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) ) -> A. z e. A ( y = z \/ ( [_ y / x ]_ ( `' F " B ) i^i [_ z / x ]_ ( `' F " B ) ) = (/) ) ) ) |
| 22 |
21
|
ralimdv |
|- ( Fun F -> ( A. y e. A A. z e. A ( y = z \/ ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) ) -> A. y e. A A. z e. A ( y = z \/ ( [_ y / x ]_ ( `' F " B ) i^i [_ z / x ]_ ( `' F " B ) ) = (/) ) ) ) |
| 23 |
|
disjors |
|- ( Disj_ x e. A B <-> A. y e. A A. z e. A ( y = z \/ ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) ) ) |
| 24 |
|
disjors |
|- ( Disj_ x e. A ( `' F " B ) <-> A. y e. A A. z e. A ( y = z \/ ( [_ y / x ]_ ( `' F " B ) i^i [_ z / x ]_ ( `' F " B ) ) = (/) ) ) |
| 25 |
22 23 24
|
3imtr4g |
|- ( Fun F -> ( Disj_ x e. A B -> Disj_ x e. A ( `' F " B ) ) ) |
| 26 |
25
|
imp |
|- ( ( Fun F /\ Disj_ x e. A B ) -> Disj_ x e. A ( `' F " B ) ) |