Metamath Proof Explorer


Theorem distps

Description: The discrete topology on a set A expressed as a topological space. (Contributed by FL, 20-Aug-2006)

Ref Expression
Hypotheses distps.a AV
distps.k K=BasendxATopSetndx𝒫A
Assertion distps KTopSp

Proof

Step Hyp Ref Expression
1 distps.a AV
2 distps.k K=BasendxATopSetndx𝒫A
3 unipw 𝒫A=A
4 3 eqcomi A=𝒫A
5 distop AV𝒫ATop
6 1 5 ax-mp 𝒫ATop
7 2 4 6 eltpsi KTopSp