Metamath Proof Explorer


Theorem ditgeq3sdv

Description: Equality theorem for the directed integral. Deduction form. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis ditgeq3sdv.1 φ C = D
Assertion ditgeq3sdv φ A B C dx = A B D dx

Proof

Step Hyp Ref Expression
1 ditgeq3sdv.1 φ C = D
2 eqidd φ A = A
3 eqidd φ B = B
4 2 3 1 ditgeq123dv φ A B C dx = A B D dx