Metamath Proof Explorer


Theorem ditgeq3sdv

Description: Equality theorem for the directed integral. Deduction form. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis ditgeq3sdv.1 ( 𝜑𝐶 = 𝐷 )
Assertion ditgeq3sdv ( 𝜑 → ⨜ [ 𝐴𝐵 ] 𝐶 d 𝑥 = ⨜ [ 𝐴𝐵 ] 𝐷 d 𝑥 )

Proof

Step Hyp Ref Expression
1 ditgeq3sdv.1 ( 𝜑𝐶 = 𝐷 )
2 eqidd ( 𝜑𝐴 = 𝐴 )
3 eqidd ( 𝜑𝐵 = 𝐵 )
4 2 3 1 ditgeq123dv ( 𝜑 → ⨜ [ 𝐴𝐵 ] 𝐶 d 𝑥 = ⨜ [ 𝐴𝐵 ] 𝐷 d 𝑥 )