Metamath Proof Explorer


Theorem ditgeq123dv

Description: Equality theorem for the directed integral. Deduction form. General version of ditgeq3sdv . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses ditgeq123dv.1 ( 𝜑𝐴 = 𝐵 )
ditgeq123dv.2 ( 𝜑𝐶 = 𝐷 )
ditgeq123dv.3 ( 𝜑𝐸 = 𝐹 )
Assertion ditgeq123dv ( 𝜑 → ⨜ [ 𝐴𝐶 ] 𝐸 d 𝑥 = ⨜ [ 𝐵𝐷 ] 𝐹 d 𝑥 )

Proof

Step Hyp Ref Expression
1 ditgeq123dv.1 ( 𝜑𝐴 = 𝐵 )
2 ditgeq123dv.2 ( 𝜑𝐶 = 𝐷 )
3 ditgeq123dv.3 ( 𝜑𝐸 = 𝐹 )
4 1 2 breq12d ( 𝜑 → ( 𝐴𝐶𝐵𝐷 ) )
5 1 2 oveq12d ( 𝜑 → ( 𝐴 (,) 𝐶 ) = ( 𝐵 (,) 𝐷 ) )
6 5 3 itgeq12sdv ( 𝜑 → ∫ ( 𝐴 (,) 𝐶 ) 𝐸 d 𝑥 = ∫ ( 𝐵 (,) 𝐷 ) 𝐹 d 𝑥 )
7 2 1 oveq12d ( 𝜑 → ( 𝐶 (,) 𝐴 ) = ( 𝐷 (,) 𝐵 ) )
8 7 3 itgeq12sdv ( 𝜑 → ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 = ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑥 )
9 8 negeqd ( 𝜑 → - ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 = - ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑥 )
10 4 6 9 ifbieq12d ( 𝜑 → if ( 𝐴𝐶 , ∫ ( 𝐴 (,) 𝐶 ) 𝐸 d 𝑥 , - ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 ) = if ( 𝐵𝐷 , ∫ ( 𝐵 (,) 𝐷 ) 𝐹 d 𝑥 , - ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑥 ) )
11 df-ditg ⨜ [ 𝐴𝐶 ] 𝐸 d 𝑥 = if ( 𝐴𝐶 , ∫ ( 𝐴 (,) 𝐶 ) 𝐸 d 𝑥 , - ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 )
12 df-ditg ⨜ [ 𝐵𝐷 ] 𝐹 d 𝑥 = if ( 𝐵𝐷 , ∫ ( 𝐵 (,) 𝐷 ) 𝐹 d 𝑥 , - ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑥 )
13 10 11 12 3eqtr4g ( 𝜑 → ⨜ [ 𝐴𝐶 ] 𝐸 d 𝑥 = ⨜ [ 𝐵𝐷 ] 𝐹 d 𝑥 )