Step |
Hyp |
Ref |
Expression |
1 |
|
ditgeq123dv.1 |
|- ( ph -> A = B ) |
2 |
|
ditgeq123dv.2 |
|- ( ph -> C = D ) |
3 |
|
ditgeq123dv.3 |
|- ( ph -> E = F ) |
4 |
1 2
|
breq12d |
|- ( ph -> ( A <_ C <-> B <_ D ) ) |
5 |
1 2
|
oveq12d |
|- ( ph -> ( A (,) C ) = ( B (,) D ) ) |
6 |
5 3
|
itgeq12sdv |
|- ( ph -> S. ( A (,) C ) E _d x = S. ( B (,) D ) F _d x ) |
7 |
2 1
|
oveq12d |
|- ( ph -> ( C (,) A ) = ( D (,) B ) ) |
8 |
7 3
|
itgeq12sdv |
|- ( ph -> S. ( C (,) A ) E _d x = S. ( D (,) B ) F _d x ) |
9 |
8
|
negeqd |
|- ( ph -> -u S. ( C (,) A ) E _d x = -u S. ( D (,) B ) F _d x ) |
10 |
4 6 9
|
ifbieq12d |
|- ( ph -> if ( A <_ C , S. ( A (,) C ) E _d x , -u S. ( C (,) A ) E _d x ) = if ( B <_ D , S. ( B (,) D ) F _d x , -u S. ( D (,) B ) F _d x ) ) |
11 |
|
df-ditg |
|- S_ [ A -> C ] E _d x = if ( A <_ C , S. ( A (,) C ) E _d x , -u S. ( C (,) A ) E _d x ) |
12 |
|
df-ditg |
|- S_ [ B -> D ] F _d x = if ( B <_ D , S. ( B (,) D ) F _d x , -u S. ( D (,) B ) F _d x ) |
13 |
10 11 12
|
3eqtr4g |
|- ( ph -> S_ [ A -> C ] E _d x = S_ [ B -> D ] F _d x ) |