Metamath Proof Explorer


Theorem ditgeq123dv

Description: Equality theorem for the directed integral. Deduction form. General version of ditgeq3sdv . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses ditgeq123dv.1
|- ( ph -> A = B )
ditgeq123dv.2
|- ( ph -> C = D )
ditgeq123dv.3
|- ( ph -> E = F )
Assertion ditgeq123dv
|- ( ph -> S_ [ A -> C ] E _d x = S_ [ B -> D ] F _d x )

Proof

Step Hyp Ref Expression
1 ditgeq123dv.1
 |-  ( ph -> A = B )
2 ditgeq123dv.2
 |-  ( ph -> C = D )
3 ditgeq123dv.3
 |-  ( ph -> E = F )
4 1 2 breq12d
 |-  ( ph -> ( A <_ C <-> B <_ D ) )
5 1 2 oveq12d
 |-  ( ph -> ( A (,) C ) = ( B (,) D ) )
6 5 3 itgeq12sdv
 |-  ( ph -> S. ( A (,) C ) E _d x = S. ( B (,) D ) F _d x )
7 2 1 oveq12d
 |-  ( ph -> ( C (,) A ) = ( D (,) B ) )
8 7 3 itgeq12sdv
 |-  ( ph -> S. ( C (,) A ) E _d x = S. ( D (,) B ) F _d x )
9 8 negeqd
 |-  ( ph -> -u S. ( C (,) A ) E _d x = -u S. ( D (,) B ) F _d x )
10 4 6 9 ifbieq12d
 |-  ( ph -> if ( A <_ C , S. ( A (,) C ) E _d x , -u S. ( C (,) A ) E _d x ) = if ( B <_ D , S. ( B (,) D ) F _d x , -u S. ( D (,) B ) F _d x ) )
11 df-ditg
 |-  S_ [ A -> C ] E _d x = if ( A <_ C , S. ( A (,) C ) E _d x , -u S. ( C (,) A ) E _d x )
12 df-ditg
 |-  S_ [ B -> D ] F _d x = if ( B <_ D , S. ( B (,) D ) F _d x , -u S. ( D (,) B ) F _d x )
13 10 11 12 3eqtr4g
 |-  ( ph -> S_ [ A -> C ] E _d x = S_ [ B -> D ] F _d x )