Metamath Proof Explorer


Theorem ditgeq12d

Description: Equality theorem for the directed integral. Deduction form. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses ditgeq12d.1
|- ( ph -> A = B )
ditgeq12d.2
|- ( ph -> C = D )
Assertion ditgeq12d
|- ( ph -> S_ [ A -> C ] E _d x = S_ [ B -> D ] E _d x )

Proof

Step Hyp Ref Expression
1 ditgeq12d.1
 |-  ( ph -> A = B )
2 ditgeq12d.2
 |-  ( ph -> C = D )
3 ditgeq1
 |-  ( A = B -> S_ [ A -> C ] E _d x = S_ [ B -> C ] E _d x )
4 ditgeq2
 |-  ( C = D -> S_ [ B -> C ] E _d x = S_ [ B -> D ] E _d x )
5 3 4 sylan9eq
 |-  ( ( A = B /\ C = D ) -> S_ [ A -> C ] E _d x = S_ [ B -> D ] E _d x )
6 1 2 5 syl2anc
 |-  ( ph -> S_ [ A -> C ] E _d x = S_ [ B -> D ] E _d x )