Description: Equality theorem for the directed integral. Deduction form. (Contributed by GG, 1-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ditgeq12d.1 | |- ( ph -> A = B ) |
|
ditgeq12d.2 | |- ( ph -> C = D ) |
||
Assertion | ditgeq12d | |- ( ph -> S_ [ A -> C ] E _d x = S_ [ B -> D ] E _d x ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ditgeq12d.1 | |- ( ph -> A = B ) |
|
2 | ditgeq12d.2 | |- ( ph -> C = D ) |
|
3 | ditgeq1 | |- ( A = B -> S_ [ A -> C ] E _d x = S_ [ B -> C ] E _d x ) |
|
4 | ditgeq2 | |- ( C = D -> S_ [ B -> C ] E _d x = S_ [ B -> D ] E _d x ) |
|
5 | 3 4 | sylan9eq | |- ( ( A = B /\ C = D ) -> S_ [ A -> C ] E _d x = S_ [ B -> D ] E _d x ) |
6 | 1 2 5 | syl2anc | |- ( ph -> S_ [ A -> C ] E _d x = S_ [ B -> D ] E _d x ) |