Metamath Proof Explorer


Theorem ditgeq12d

Description: Equality theorem for the directed integral. Deduction form. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses ditgeq12d.1 ( 𝜑𝐴 = 𝐵 )
ditgeq12d.2 ( 𝜑𝐶 = 𝐷 )
Assertion ditgeq12d ( 𝜑 → ⨜ [ 𝐴𝐶 ] 𝐸 d 𝑥 = ⨜ [ 𝐵𝐷 ] 𝐸 d 𝑥 )

Proof

Step Hyp Ref Expression
1 ditgeq12d.1 ( 𝜑𝐴 = 𝐵 )
2 ditgeq12d.2 ( 𝜑𝐶 = 𝐷 )
3 ditgeq1 ( 𝐴 = 𝐵 → ⨜ [ 𝐴𝐶 ] 𝐸 d 𝑥 = ⨜ [ 𝐵𝐶 ] 𝐸 d 𝑥 )
4 ditgeq2 ( 𝐶 = 𝐷 → ⨜ [ 𝐵𝐶 ] 𝐸 d 𝑥 = ⨜ [ 𝐵𝐷 ] 𝐸 d 𝑥 )
5 3 4 sylan9eq ( ( 𝐴 = 𝐵𝐶 = 𝐷 ) → ⨜ [ 𝐴𝐶 ] 𝐸 d 𝑥 = ⨜ [ 𝐵𝐷 ] 𝐸 d 𝑥 )
6 1 2 5 syl2anc ( 𝜑 → ⨜ [ 𝐴𝐶 ] 𝐸 d 𝑥 = ⨜ [ 𝐵𝐷 ] 𝐸 d 𝑥 )