| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgeq12sdv.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| 2 |
|
itgeq12sdv.2 |
⊢ ( 𝜑 → 𝐶 = 𝐷 ) |
| 3 |
2
|
oveq1d |
⊢ ( 𝜑 → ( 𝐶 / ( i ↑ 𝑘 ) ) = ( 𝐷 / ( i ↑ 𝑘 ) ) ) |
| 4 |
3
|
fveq2d |
⊢ ( 𝜑 → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) ) |
| 5 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 6 |
5
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) ) ) |
| 7 |
6
|
ifbid |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) |
| 8 |
4 7
|
csbeq12dv |
⊢ ( 𝜑 → ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) = ⦋ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) |
| 9 |
8
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) |
| 11 |
10
|
oveq2d |
⊢ ( 𝜑 → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) = ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) ) |
| 12 |
11
|
sumeq2sdv |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) ) |
| 13 |
|
df-itg |
⊢ ∫ 𝐴 𝐶 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) |
| 14 |
|
df-itg |
⊢ ∫ 𝐵 𝐷 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) |
| 15 |
12 13 14
|
3eqtr4g |
⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 𝐷 d 𝑥 ) |