Description: Equality theorem for an integral. Deduction form. (Contributed by GG, 1-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itgeq2sdv.1 | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) | |
| Assertion | itgeq2sdv | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 𝐶 d 𝑥 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | itgeq2sdv.1 | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) | |
| 2 | eqidd | ⊢ ( 𝜑 → 𝐴 = 𝐴 ) | |
| 3 | 2 1 | itgeq12sdv | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 𝐶 d 𝑥 ) |