Metamath Proof Explorer


Theorem itgeq2sdv

Description: Equality theorem for an integral. Deduction form. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis itgeq2sdv.1 ( 𝜑𝐵 = 𝐶 )
Assertion itgeq2sdv ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 𝐶 d 𝑥 )

Proof

Step Hyp Ref Expression
1 itgeq2sdv.1 ( 𝜑𝐵 = 𝐶 )
2 eqidd ( 𝜑𝐴 = 𝐴 )
3 2 1 itgeq12sdv ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 𝐶 d 𝑥 )