Description: Equality theorem for an integral. Deduction form. (Contributed by GG, 1-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | itgeq2sdv.1 | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) | |
Assertion | itgeq2sdv | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 𝐶 d 𝑥 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgeq2sdv.1 | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) | |
2 | eqidd | ⊢ ( 𝜑 → 𝐴 = 𝐴 ) | |
3 | 2 1 | itgeq12sdv | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 𝐶 d 𝑥 ) |