Description: Equality theorem for an integral. Deduction form. (Contributed by GG, 1-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itgeq2sdv.1 | |- ( ph -> B = C ) |
|
| Assertion | itgeq2sdv | |- ( ph -> S. A B _d x = S. A C _d x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgeq2sdv.1 | |- ( ph -> B = C ) |
|
| 2 | eqidd | |- ( ph -> A = A ) |
|
| 3 | 2 1 | itgeq12sdv | |- ( ph -> S. A B _d x = S. A C _d x ) |