Metamath Proof Explorer


Theorem itgeq2sdv

Description: Equality theorem for an integral. Deduction form. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis itgeq2sdv.1 φ B = C
Assertion itgeq2sdv φ A B dx = A C dx

Proof

Step Hyp Ref Expression
1 itgeq2sdv.1 φ B = C
2 eqidd φ A = A
3 2 1 itgeq12sdv φ A B dx = A C dx