Metamath Proof Explorer


Theorem div2negd

Description: Quotient of two negatives. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φA
divcld.2 φB
divcld.3 φB0
Assertion div2negd φAB=AB

Proof

Step Hyp Ref Expression
1 div1d.1 φA
2 divcld.2 φB
3 divcld.3 φB0
4 div2neg ABB0AB=AB
5 1 2 3 4 syl3anc φAB=AB