Metamath Proof Explorer


Theorem divcld

Description: Closure law for division. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φA
divcld.2 φB
divcld.3 φB0
Assertion divcld φAB

Proof

Step Hyp Ref Expression
1 div1d.1 φA
2 divcld.2 φB
3 divcld.3 φB0
4 divcl ABB0AB
5 1 2 3 4 syl3anc φAB