Metamath Proof Explorer


Theorem divdivdivd

Description: Division of two ratios. Theorem I.15 of Apostol p. 18. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φA
divcld.2 φB
divmuld.3 φC
divmuldivd.4 φD
divmuldivd.5 φB0
divmuldivd.6 φD0
divdivdivd.7 φC0
Assertion divdivdivd φABCD=ADBC

Proof

Step Hyp Ref Expression
1 div1d.1 φA
2 divcld.2 φB
3 divmuld.3 φC
4 divmuldivd.4 φD
5 divmuldivd.5 φB0
6 divmuldivd.6 φD0
7 divdivdivd.7 φC0
8 2 5 jca φBB0
9 3 7 jca φCC0
10 4 6 jca φDD0
11 divdivdiv ABB0CC0DD0ABCD=ADBC
12 1 8 9 10 11 syl22anc φABCD=ADBC