Metamath Proof Explorer


Theorem divdivdivi

Description: Division of two ratios. Theorem I.15 of Apostol p. 18. (Contributed by NM, 22-Feb-1995)

Ref Expression
Hypotheses divclz.1 A
divclz.2 B
divmulz.3 C
divmuldiv.4 D
divmuldiv.5 B0
divmuldiv.6 D0
divdivdiv.7 C0
Assertion divdivdivi ABCD=ADBC

Proof

Step Hyp Ref Expression
1 divclz.1 A
2 divclz.2 B
3 divmulz.3 C
4 divmuldiv.4 D
5 divmuldiv.5 B0
6 divmuldiv.6 D0
7 divdivdiv.7 C0
8 2 5 pm3.2i BB0
9 3 7 pm3.2i CC0
10 4 6 pm3.2i DD0
11 divdivdiv ABB0CC0DD0ABCD=ADBC
12 1 8 9 10 11 mp4an ABCD=ADBC