Metamath Proof Explorer


Theorem divrec2d

Description: Relationship between division and reciprocal. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φA
divcld.2 φB
divcld.3 φB0
Assertion divrec2d φAB=1BA

Proof

Step Hyp Ref Expression
1 div1d.1 φA
2 divcld.2 φB
3 divcld.3 φB0
4 divrec2 ABB0AB=1BA
5 1 2 3 4 syl3anc φAB=1BA