Metamath Proof Explorer


Theorem divsrecd

Description: Relationship between surreal division and reciprocal. (Contributed by Scott Fenton, 13-Aug-2025)

Ref Expression
Hypotheses divsrecd.1 φ A No
divsrecd.2 φ B No
divsrecd.3 φ B 0 s
Assertion divsrecd φ A / su B = A s 1 s / su B

Proof

Step Hyp Ref Expression
1 divsrecd.1 φ A No
2 divsrecd.2 φ B No
3 divsrecd.3 φ B 0 s
4 1sno 1 s No
5 4 a1i φ 1 s No
6 5 2 3 divscld φ 1 s / su B No
7 2 1 6 muls12d φ B s A s 1 s / su B = A s B s 1 s / su B
8 5 2 3 divscan2d φ B s 1 s / su B = 1 s
9 8 oveq2d φ A s B s 1 s / su B = A s 1 s
10 1 mulsridd φ A s 1 s = A
11 7 9 10 3eqtrd φ B s A s 1 s / su B = A
12 1 6 mulscld φ A s 1 s / su B No
13 1 12 2 3 divsmuld φ A / su B = A s 1 s / su B B s A s 1 s / su B = A
14 11 13 mpbird φ A / su B = A s 1 s / su B