Step |
Hyp |
Ref |
Expression |
1 |
|
divsrecd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
divsrecd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
divsrecd.3 |
⊢ ( 𝜑 → 𝐵 ≠ 0s ) |
4 |
|
1sno |
⊢ 1s ∈ No |
5 |
4
|
a1i |
⊢ ( 𝜑 → 1s ∈ No ) |
6 |
5 2 3
|
divscld |
⊢ ( 𝜑 → ( 1s /su 𝐵 ) ∈ No ) |
7 |
2 1 6
|
muls12d |
⊢ ( 𝜑 → ( 𝐵 ·s ( 𝐴 ·s ( 1s /su 𝐵 ) ) ) = ( 𝐴 ·s ( 𝐵 ·s ( 1s /su 𝐵 ) ) ) ) |
8 |
5 2 3
|
divscan2d |
⊢ ( 𝜑 → ( 𝐵 ·s ( 1s /su 𝐵 ) ) = 1s ) |
9 |
8
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ·s ( 𝐵 ·s ( 1s /su 𝐵 ) ) ) = ( 𝐴 ·s 1s ) ) |
10 |
1
|
mulsridd |
⊢ ( 𝜑 → ( 𝐴 ·s 1s ) = 𝐴 ) |
11 |
7 9 10
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐵 ·s ( 𝐴 ·s ( 1s /su 𝐵 ) ) ) = 𝐴 ) |
12 |
1 6
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s ( 1s /su 𝐵 ) ) ∈ No ) |
13 |
1 12 2 3
|
divsmuld |
⊢ ( 𝜑 → ( ( 𝐴 /su 𝐵 ) = ( 𝐴 ·s ( 1s /su 𝐵 ) ) ↔ ( 𝐵 ·s ( 𝐴 ·s ( 1s /su 𝐵 ) ) ) = 𝐴 ) ) |
14 |
11 13
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 /su 𝐵 ) = ( 𝐴 ·s ( 1s /su 𝐵 ) ) ) |