Metamath Proof Explorer
		
		
		
		Description:  Surreal division closure law.  (Contributed by Scott Fenton, 16-Mar-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | divscld.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
					
						|  |  | divscld.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
					
						|  |  | divscld.3 | ⊢ ( 𝜑  →  𝐵  ≠   0s  ) | 
				
					|  | Assertion | divscld | ⊢  ( 𝜑  →  ( 𝐴  /su  𝐵 )  ∈   No  ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divscld.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 2 |  | divscld.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 3 |  | divscld.3 | ⊢ ( 𝜑  →  𝐵  ≠   0s  ) | 
						
							| 4 |  | divscl | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐵  ≠   0s  )  →  ( 𝐴  /su  𝐵 )  ∈   No  ) | 
						
							| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴  /su  𝐵 )  ∈   No  ) |