Metamath Proof Explorer


Theorem divscld

Description: Surreal division closure law. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Hypotheses divscld.1 ( 𝜑𝐴 No )
divscld.2 ( 𝜑𝐵 No )
divscld.3 ( 𝜑𝐵 ≠ 0s )
Assertion divscld ( 𝜑 → ( 𝐴 /su 𝐵 ) ∈ No )

Proof

Step Hyp Ref Expression
1 divscld.1 ( 𝜑𝐴 No )
2 divscld.2 ( 𝜑𝐵 No )
3 divscld.3 ( 𝜑𝐵 ≠ 0s )
4 divscl ( ( 𝐴 No 𝐵 No 𝐵 ≠ 0s ) → ( 𝐴 /su 𝐵 ) ∈ No )
5 1 2 3 4 syl3anc ( 𝜑 → ( 𝐴 /su 𝐵 ) ∈ No )