Metamath Proof Explorer


Theorem divscld

Description: Surreal division closure law. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Hypotheses divscld.1
|- ( ph -> A e. No )
divscld.2
|- ( ph -> B e. No )
divscld.3
|- ( ph -> B =/= 0s )
Assertion divscld
|- ( ph -> ( A /su B ) e. No )

Proof

Step Hyp Ref Expression
1 divscld.1
 |-  ( ph -> A e. No )
2 divscld.2
 |-  ( ph -> B e. No )
3 divscld.3
 |-  ( ph -> B =/= 0s )
4 divscl
 |-  ( ( A e. No /\ B e. No /\ B =/= 0s ) -> ( A /su B ) e. No )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( A /su B ) e. No )