| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divsdird.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
divsdird.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
divsdird.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
| 4 |
|
divsdird.4 |
⊢ ( 𝜑 → 𝐶 ≠ 0s ) |
| 5 |
|
1sno |
⊢ 1s ∈ No |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → 1s ∈ No ) |
| 7 |
6 3 4
|
divscld |
⊢ ( 𝜑 → ( 1s /su 𝐶 ) ∈ No ) |
| 8 |
1 2 7
|
addsdird |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) ·s ( 1s /su 𝐶 ) ) = ( ( 𝐴 ·s ( 1s /su 𝐶 ) ) +s ( 𝐵 ·s ( 1s /su 𝐶 ) ) ) ) |
| 9 |
1 2
|
addscld |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ No ) |
| 10 |
9 3 4
|
divsrecd |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) /su 𝐶 ) = ( ( 𝐴 +s 𝐵 ) ·s ( 1s /su 𝐶 ) ) ) |
| 11 |
1 3 4
|
divsrecd |
⊢ ( 𝜑 → ( 𝐴 /su 𝐶 ) = ( 𝐴 ·s ( 1s /su 𝐶 ) ) ) |
| 12 |
2 3 4
|
divsrecd |
⊢ ( 𝜑 → ( 𝐵 /su 𝐶 ) = ( 𝐵 ·s ( 1s /su 𝐶 ) ) ) |
| 13 |
11 12
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 /su 𝐶 ) +s ( 𝐵 /su 𝐶 ) ) = ( ( 𝐴 ·s ( 1s /su 𝐶 ) ) +s ( 𝐵 ·s ( 1s /su 𝐶 ) ) ) ) |
| 14 |
8 10 13
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) /su 𝐶 ) = ( ( 𝐴 /su 𝐶 ) +s ( 𝐵 /su 𝐶 ) ) ) |