Metamath Proof Explorer


Theorem divsdird

Description: Distribution of surreal division over addition. (Contributed by Scott Fenton, 13-Aug-2025)

Ref Expression
Hypotheses divsdird.1 ( 𝜑𝐴 No )
divsdird.2 ( 𝜑𝐵 No )
divsdird.3 ( 𝜑𝐶 No )
divsdird.4 ( 𝜑𝐶 ≠ 0s )
Assertion divsdird ( 𝜑 → ( ( 𝐴 +s 𝐵 ) /su 𝐶 ) = ( ( 𝐴 /su 𝐶 ) +s ( 𝐵 /su 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 divsdird.1 ( 𝜑𝐴 No )
2 divsdird.2 ( 𝜑𝐵 No )
3 divsdird.3 ( 𝜑𝐶 No )
4 divsdird.4 ( 𝜑𝐶 ≠ 0s )
5 1sno 1s No
6 5 a1i ( 𝜑 → 1s No )
7 6 3 4 divscld ( 𝜑 → ( 1s /su 𝐶 ) ∈ No )
8 1 2 7 addsdird ( 𝜑 → ( ( 𝐴 +s 𝐵 ) ·s ( 1s /su 𝐶 ) ) = ( ( 𝐴 ·s ( 1s /su 𝐶 ) ) +s ( 𝐵 ·s ( 1s /su 𝐶 ) ) ) )
9 1 2 addscld ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ No )
10 9 3 4 divsrecd ( 𝜑 → ( ( 𝐴 +s 𝐵 ) /su 𝐶 ) = ( ( 𝐴 +s 𝐵 ) ·s ( 1s /su 𝐶 ) ) )
11 1 3 4 divsrecd ( 𝜑 → ( 𝐴 /su 𝐶 ) = ( 𝐴 ·s ( 1s /su 𝐶 ) ) )
12 2 3 4 divsrecd ( 𝜑 → ( 𝐵 /su 𝐶 ) = ( 𝐵 ·s ( 1s /su 𝐶 ) ) )
13 11 12 oveq12d ( 𝜑 → ( ( 𝐴 /su 𝐶 ) +s ( 𝐵 /su 𝐶 ) ) = ( ( 𝐴 ·s ( 1s /su 𝐶 ) ) +s ( 𝐵 ·s ( 1s /su 𝐶 ) ) ) )
14 8 10 13 3eqtr4d ( 𝜑 → ( ( 𝐴 +s 𝐵 ) /su 𝐶 ) = ( ( 𝐴 /su 𝐶 ) +s ( 𝐵 /su 𝐶 ) ) )