Description: A cancellation law for surreal division. (Contributed by Scott Fenton, 13-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | divscan3d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
divscan3d.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
divscan3d.3 | ⊢ ( 𝜑 → 𝐵 ≠ 0s ) | ||
Assertion | divscan3d | ⊢ ( 𝜑 → ( ( 𝐵 ·s 𝐴 ) /su 𝐵 ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divscan3d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
2 | divscan3d.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
3 | divscan3d.3 | ⊢ ( 𝜑 → 𝐵 ≠ 0s ) | |
4 | eqid | ⊢ ( 𝐵 ·s 𝐴 ) = ( 𝐵 ·s 𝐴 ) | |
5 | 2 1 | mulscld | ⊢ ( 𝜑 → ( 𝐵 ·s 𝐴 ) ∈ No ) |
6 | 5 1 2 3 | divsmuld | ⊢ ( 𝜑 → ( ( ( 𝐵 ·s 𝐴 ) /su 𝐵 ) = 𝐴 ↔ ( 𝐵 ·s 𝐴 ) = ( 𝐵 ·s 𝐴 ) ) ) |
7 | 4 6 | mpbiri | ⊢ ( 𝜑 → ( ( 𝐵 ·s 𝐴 ) /su 𝐵 ) = 𝐴 ) |