Metamath Proof Explorer


Theorem divscan3d

Description: A cancellation law for surreal division. (Contributed by Scott Fenton, 13-Aug-2025)

Ref Expression
Hypotheses divscan3d.1 ( 𝜑𝐴 No )
divscan3d.2 ( 𝜑𝐵 No )
divscan3d.3 ( 𝜑𝐵 ≠ 0s )
Assertion divscan3d ( 𝜑 → ( ( 𝐵 ·s 𝐴 ) /su 𝐵 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 divscan3d.1 ( 𝜑𝐴 No )
2 divscan3d.2 ( 𝜑𝐵 No )
3 divscan3d.3 ( 𝜑𝐵 ≠ 0s )
4 eqid ( 𝐵 ·s 𝐴 ) = ( 𝐵 ·s 𝐴 )
5 2 1 mulscld ( 𝜑 → ( 𝐵 ·s 𝐴 ) ∈ No )
6 5 1 2 3 divsmuld ( 𝜑 → ( ( ( 𝐵 ·s 𝐴 ) /su 𝐵 ) = 𝐴 ↔ ( 𝐵 ·s 𝐴 ) = ( 𝐵 ·s 𝐴 ) ) )
7 4 6 mpbiri ( 𝜑 → ( ( 𝐵 ·s 𝐴 ) /su 𝐵 ) = 𝐴 )