Description: A cancellation law for surreal division. (Contributed by Scott Fenton, 13-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divscan3d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| divscan3d.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
| divscan3d.3 | ⊢ ( 𝜑 → 𝐵 ≠ 0s ) | ||
| Assertion | divscan3d | ⊢ ( 𝜑 → ( ( 𝐵 ·s 𝐴 ) /su 𝐵 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divscan3d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 2 | divscan3d.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
| 3 | divscan3d.3 | ⊢ ( 𝜑 → 𝐵 ≠ 0s ) | |
| 4 | eqid | ⊢ ( 𝐵 ·s 𝐴 ) = ( 𝐵 ·s 𝐴 ) | |
| 5 | 2 1 | mulscld | ⊢ ( 𝜑 → ( 𝐵 ·s 𝐴 ) ∈ No ) |
| 6 | 5 1 2 3 | divsmuld | ⊢ ( 𝜑 → ( ( ( 𝐵 ·s 𝐴 ) /su 𝐵 ) = 𝐴 ↔ ( 𝐵 ·s 𝐴 ) = ( 𝐵 ·s 𝐴 ) ) ) |
| 7 | 4 6 | mpbiri | ⊢ ( 𝜑 → ( ( 𝐵 ·s 𝐴 ) /su 𝐵 ) = 𝐴 ) |