Metamath Proof Explorer


Theorem divscan3d

Description: A cancellation law for surreal division. (Contributed by Scott Fenton, 13-Aug-2025)

Ref Expression
Hypotheses divscan3d.1
|- ( ph -> A e. No )
divscan3d.2
|- ( ph -> B e. No )
divscan3d.3
|- ( ph -> B =/= 0s )
Assertion divscan3d
|- ( ph -> ( ( B x.s A ) /su B ) = A )

Proof

Step Hyp Ref Expression
1 divscan3d.1
 |-  ( ph -> A e. No )
2 divscan3d.2
 |-  ( ph -> B e. No )
3 divscan3d.3
 |-  ( ph -> B =/= 0s )
4 eqid
 |-  ( B x.s A ) = ( B x.s A )
5 2 1 mulscld
 |-  ( ph -> ( B x.s A ) e. No )
6 5 1 2 3 divsmuld
 |-  ( ph -> ( ( ( B x.s A ) /su B ) = A <-> ( B x.s A ) = ( B x.s A ) ) )
7 4 6 mpbiri
 |-  ( ph -> ( ( B x.s A ) /su B ) = A )