Description: A cancellation law for surreal division. (Contributed by Scott Fenton, 13-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | divscan3d.1 | |- ( ph -> A e. No ) |
|
divscan3d.2 | |- ( ph -> B e. No ) |
||
divscan3d.3 | |- ( ph -> B =/= 0s ) |
||
Assertion | divscan3d | |- ( ph -> ( ( B x.s A ) /su B ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divscan3d.1 | |- ( ph -> A e. No ) |
|
2 | divscan3d.2 | |- ( ph -> B e. No ) |
|
3 | divscan3d.3 | |- ( ph -> B =/= 0s ) |
|
4 | eqid | |- ( B x.s A ) = ( B x.s A ) |
|
5 | 2 1 | mulscld | |- ( ph -> ( B x.s A ) e. No ) |
6 | 5 1 2 3 | divsmuld | |- ( ph -> ( ( ( B x.s A ) /su B ) = A <-> ( B x.s A ) = ( B x.s A ) ) ) |
7 | 4 6 | mpbiri | |- ( ph -> ( ( B x.s A ) /su B ) = A ) |