Metamath Proof Explorer


Theorem dmmpogaOLD

Description: Obsolete version of dmmpoga as of 29-May-2024. (Contributed by Alexander van der Vekens, 10-Feb-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis dmmpog.f F=xA,yBC
Assertion dmmpogaOLD xAyBCVdomF=A×B

Proof

Step Hyp Ref Expression
1 dmmpog.f F=xA,yBC
2 1 fnmpo xAyBCVFFnA×B
3 fndm FFnA×BdomF=A×B
4 2 3 syl xAyBCVdomF=A×B