Metamath Proof Explorer


Theorem dmmpogaOLD

Description: Obsolete version of dmmpoga as of 29-May-2024. (Contributed by Alexander van der Vekens, 10-Feb-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis dmmpog.f F = x A , y B C
Assertion dmmpogaOLD x A y B C V dom F = A × B

Proof

Step Hyp Ref Expression
1 dmmpog.f F = x A , y B C
2 1 fnmpo x A y B C V F Fn A × B
3 fndm F Fn A × B dom F = A × B
4 2 3 syl x A y B C V dom F = A × B