Metamath Proof Explorer


Theorem dmmpt

Description: The domain of the mapping operation in general. (Contributed by NM, 16-May-1995) (Revised by Mario Carneiro, 22-Mar-2015)

Ref Expression
Hypothesis dmmpt.1 F=xAB
Assertion dmmpt domF=xA|BV

Proof

Step Hyp Ref Expression
1 dmmpt.1 F=xAB
2 dfdm4 domF=ranF-1
3 dfrn4 ranF-1=F-1V
4 1 mptpreima F-1V=xA|BV
5 2 3 4 3eqtri domF=xA|BV