Metamath Proof Explorer


Theorem dmopabss

Description: Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004)

Ref Expression
Assertion dmopabss domxy|xAφA

Proof

Step Hyp Ref Expression
1 dmopab domxy|xAφ=x|yxAφ
2 19.42v yxAφxAyφ
3 2 abbii x|yxAφ=x|xAyφ
4 ssab2 x|xAyφA
5 3 4 eqsstri x|yxAφA
6 1 5 eqsstri domxy|xAφA