Metamath Proof Explorer


Theorem dmprop

Description: The domain of an unordered pair of ordered pairs. (Contributed by NM, 13-Sep-2011)

Ref Expression
Hypotheses dmsnop.1 BV
dmprop.1 DV
Assertion dmprop domABCD=AC

Proof

Step Hyp Ref Expression
1 dmsnop.1 BV
2 dmprop.1 DV
3 dmpropg BVDVdomABCD=AC
4 1 2 3 mp2an domABCD=AC