Metamath Proof Explorer


Theorem dmresv

Description: The domain of a universal restriction. (Contributed by NM, 14-May-2008)

Ref Expression
Assertion dmresv domAV=domA

Proof

Step Hyp Ref Expression
1 dmres domAV=VdomA
2 incom VdomA=domAV
3 inv1 domAV=domA
4 1 2 3 3eqtri domAV=domA