Metamath Proof Explorer


Theorem dmxpid

Description: The domain of a Cartesian square. (Contributed by NM, 28-Jul-1995)

Ref Expression
Assertion dmxpid domA×A=A

Proof

Step Hyp Ref Expression
1 dm0 dom=
2 xpeq1 A=A×A=×A
3 0xp ×A=
4 2 3 eqtrdi A=A×A=
5 4 dmeqd A=domA×A=dom
6 id A=A=
7 1 5 6 3eqtr4a A=domA×A=A
8 dmxp AdomA×A=A
9 7 8 pm2.61ine domA×A=A