Metamath Proof Explorer


Theorem dmxrn

Description: Domain of the range product. (Contributed by Peter Mazsa, 19-Apr-2020) (Revised by Peter Mazsa, 22-Nov-2025)

Ref Expression
Assertion dmxrn dom R S = dom R dom S

Proof

Step Hyp Ref Expression
1 exdistrv x y z R x z S y x z R x y z S y
2 1 abbii z | x y z R x z S y = z | x z R x y z S y
3 dfxrn2 R S = x y z | z R x z S y -1
4 3 dmeqi dom R S = dom x y z | z R x z S y -1
5 df-rn ran x y z | z R x z S y = dom x y z | z R x z S y -1
6 rnoprab ran x y z | z R x z S y = z | x y z R x z S y
7 4 5 6 3eqtr2i dom R S = z | x y z R x z S y
8 inab z | x z R x z | y z S y = z | x z R x y z S y
9 2 7 8 3eqtr4i dom R S = z | x z R x z | y z S y
10 df-dm dom R = z | x z R x
11 df-dm dom S = z | y z S y
12 10 11 ineq12i dom R dom S = z | x z R x z | y z S y
13 9 12 eqtr4i dom R S = dom R dom S