| Step |
Hyp |
Ref |
Expression |
| 1 |
|
exdistrv |
|- ( E. x E. y ( z R x /\ z S y ) <-> ( E. x z R x /\ E. y z S y ) ) |
| 2 |
1
|
abbii |
|- { z | E. x E. y ( z R x /\ z S y ) } = { z | ( E. x z R x /\ E. y z S y ) } |
| 3 |
|
dfxrn2 |
|- ( R |X. S ) = `' { <. <. x , y >. , z >. | ( z R x /\ z S y ) } |
| 4 |
3
|
dmeqi |
|- dom ( R |X. S ) = dom `' { <. <. x , y >. , z >. | ( z R x /\ z S y ) } |
| 5 |
|
df-rn |
|- ran { <. <. x , y >. , z >. | ( z R x /\ z S y ) } = dom `' { <. <. x , y >. , z >. | ( z R x /\ z S y ) } |
| 6 |
|
rnoprab |
|- ran { <. <. x , y >. , z >. | ( z R x /\ z S y ) } = { z | E. x E. y ( z R x /\ z S y ) } |
| 7 |
4 5 6
|
3eqtr2i |
|- dom ( R |X. S ) = { z | E. x E. y ( z R x /\ z S y ) } |
| 8 |
|
inab |
|- ( { z | E. x z R x } i^i { z | E. y z S y } ) = { z | ( E. x z R x /\ E. y z S y ) } |
| 9 |
2 7 8
|
3eqtr4i |
|- dom ( R |X. S ) = ( { z | E. x z R x } i^i { z | E. y z S y } ) |
| 10 |
|
df-dm |
|- dom R = { z | E. x z R x } |
| 11 |
|
df-dm |
|- dom S = { z | E. y z S y } |
| 12 |
10 11
|
ineq12i |
|- ( dom R i^i dom S ) = ( { z | E. x z R x } i^i { z | E. y z S y } ) |
| 13 |
9 12
|
eqtr4i |
|- dom ( R |X. S ) = ( dom R i^i dom S ) |