| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-dm |
|- dom `' _E = { x | E. y x `' _E y } |
| 2 |
|
brcnvep |
|- ( x e. _V -> ( x `' _E y <-> y e. x ) ) |
| 3 |
2
|
elv |
|- ( x `' _E y <-> y e. x ) |
| 4 |
3
|
exbii |
|- ( E. y x `' _E y <-> E. y y e. x ) |
| 5 |
4
|
abbii |
|- { x | E. y x `' _E y } = { x | E. y y e. x } |
| 6 |
|
df-sn |
|- { (/) } = { x | x = (/) } |
| 7 |
6
|
difeq2i |
|- ( _V \ { (/) } ) = ( _V \ { x | x = (/) } ) |
| 8 |
|
notab |
|- { x | -. x = (/) } = ( _V \ { x | x = (/) } ) |
| 9 |
|
neq0 |
|- ( -. x = (/) <-> E. y y e. x ) |
| 10 |
9
|
abbii |
|- { x | -. x = (/) } = { x | E. y y e. x } |
| 11 |
7 8 10
|
3eqtr2ri |
|- { x | E. y y e. x } = ( _V \ { (/) } ) |
| 12 |
1 5 11
|
3eqtri |
|- dom `' _E = ( _V \ { (/) } ) |