Metamath Proof Explorer


Theorem dmcnvep

Description: Domain of converse epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018) (Revised by Peter Mazsa, 23-Nov-2025)

Ref Expression
Assertion dmcnvep dom E -1 = V

Proof

Step Hyp Ref Expression
1 df-dm dom E -1 = x | y x E -1 y
2 brcnvep x V x E -1 y y x
3 2 elv x E -1 y y x
4 3 exbii y x E -1 y y y x
5 4 abbii x | y x E -1 y = x | y y x
6 df-sn = x | x =
7 6 difeq2i V = V x | x =
8 notab x | ¬ x = = V x | x =
9 neq0 ¬ x = y y x
10 9 abbii x | ¬ x = = x | y y x
11 7 8 10 3eqtr2ri x | y y x = V
12 1 5 11 3eqtri dom E -1 = V