| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-dm |
⊢ dom ◡ E = { 𝑥 ∣ ∃ 𝑦 𝑥 ◡ E 𝑦 } |
| 2 |
|
brcnvep |
⊢ ( 𝑥 ∈ V → ( 𝑥 ◡ E 𝑦 ↔ 𝑦 ∈ 𝑥 ) ) |
| 3 |
2
|
elv |
⊢ ( 𝑥 ◡ E 𝑦 ↔ 𝑦 ∈ 𝑥 ) |
| 4 |
3
|
exbii |
⊢ ( ∃ 𝑦 𝑥 ◡ E 𝑦 ↔ ∃ 𝑦 𝑦 ∈ 𝑥 ) |
| 5 |
4
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 𝑥 ◡ E 𝑦 } = { 𝑥 ∣ ∃ 𝑦 𝑦 ∈ 𝑥 } |
| 6 |
|
df-sn |
⊢ { ∅ } = { 𝑥 ∣ 𝑥 = ∅ } |
| 7 |
6
|
difeq2i |
⊢ ( V ∖ { ∅ } ) = ( V ∖ { 𝑥 ∣ 𝑥 = ∅ } ) |
| 8 |
|
notab |
⊢ { 𝑥 ∣ ¬ 𝑥 = ∅ } = ( V ∖ { 𝑥 ∣ 𝑥 = ∅ } ) |
| 9 |
|
neq0 |
⊢ ( ¬ 𝑥 = ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑥 ) |
| 10 |
9
|
abbii |
⊢ { 𝑥 ∣ ¬ 𝑥 = ∅ } = { 𝑥 ∣ ∃ 𝑦 𝑦 ∈ 𝑥 } |
| 11 |
7 8 10
|
3eqtr2ri |
⊢ { 𝑥 ∣ ∃ 𝑦 𝑦 ∈ 𝑥 } = ( V ∖ { ∅ } ) |
| 12 |
1 5 11
|
3eqtri |
⊢ dom ◡ E = ( V ∖ { ∅ } ) |