Metamath Proof Explorer


Theorem dmcnvep

Description: Domain of converse epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018) (Revised by Peter Mazsa, 23-Nov-2025)

Ref Expression
Assertion dmcnvep dom E = ( V ∖ { ∅ } )

Proof

Step Hyp Ref Expression
1 df-dm dom E = { 𝑥 ∣ ∃ 𝑦 𝑥 E 𝑦 }
2 brcnvep ( 𝑥 ∈ V → ( 𝑥 E 𝑦𝑦𝑥 ) )
3 2 elv ( 𝑥 E 𝑦𝑦𝑥 )
4 3 exbii ( ∃ 𝑦 𝑥 E 𝑦 ↔ ∃ 𝑦 𝑦𝑥 )
5 4 abbii { 𝑥 ∣ ∃ 𝑦 𝑥 E 𝑦 } = { 𝑥 ∣ ∃ 𝑦 𝑦𝑥 }
6 df-sn { ∅ } = { 𝑥𝑥 = ∅ }
7 6 difeq2i ( V ∖ { ∅ } ) = ( V ∖ { 𝑥𝑥 = ∅ } )
8 notab { 𝑥 ∣ ¬ 𝑥 = ∅ } = ( V ∖ { 𝑥𝑥 = ∅ } )
9 neq0 ( ¬ 𝑥 = ∅ ↔ ∃ 𝑦 𝑦𝑥 )
10 9 abbii { 𝑥 ∣ ¬ 𝑥 = ∅ } = { 𝑥 ∣ ∃ 𝑦 𝑦𝑥 }
11 7 8 10 3eqtr2ri { 𝑥 ∣ ∃ 𝑦 𝑦𝑥 } = ( V ∖ { ∅ } )
12 1 5 11 3eqtri dom E = ( V ∖ { ∅ } )